
A11104 fiE77SS

NISTIR 5654

NIST

I PUBLICATIONS®

Defining Environment integration

Requirements

Barbara Cuthill

Marvin Zelkowitz

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Building 225, Room B266
Gaithersburg, MD 20899

QC

100 NIST
.056

NO. 5654
1995

,

Defining Environment Integration

Requirements

Barbara Cuthill

Marvin Zelkowitz

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Building 225, Room B266
Gaithersburg, MD 20899

May 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

-mfM

th

m i C!,

,(. ,, ;.,, r'T^gf
.'r

' '-. ' jfSc- : « .

*^*5* fjsr
' .ifiRMH "‘

‘;*T

fe‘
< :X-0:

- An.''.

*:: ».«**.-

a^»«Hn0tS«ep«»S9 ,

.. „„liM
^u\ ':i\iy

m‘^

ifill',

1 IS a-'g

'I

y..:ym i^;r

>- .; -./fi

:.t.
'

•!-i:

:0iA^r
, \f ' '

Ttiij

if *
,;. •d ,'t,v^

#.^1

; «!? ii%i

'

„.
. ^

1
.‘i:V..S'/llS»9 K''.:.!iv

‘'PSV 3S:

v^Sfei-,

11
^*^.'

-f/SSL.,

, , ,
HCH

Table of Contents

Executive Summary 2

1 Introduction 3

2 Background 4

2.1 Integration Definitions 4

2.2 Requirement Specification and Collection 4

2.3 ITEM Model 5

2.4 ITEM Model and Integration 6

2.5 Enterprise Integration Options 8

3 Defining Integration Requirements 9

3.1 Constraint View 10

3.2 Interface View 12

3.3 Semantic View 12

3.4 External View 14

3.5 Requirements Definition 16

4 Example: Software Development 19

4.1 Constraint View of the Software Development Enterprise 23

4.2 Interface View of Software Development Activities 23

4.3 Semantic View of Software Development Services 25

5 Conclusions 30

References 3

1

1

Executive Summary

This report describes a process for defining environment integration requirements,

especially data and control integration requirements, using the Information Technology

Engineering and Measurement (ITEM) model for information technology use in an enterprise.

This paper will discuss the use of enterprise and process modeling to classify the features of the

enterprise process, its automation and the external stimuli on the enterprise that affect enterprise

choices for tool and environment integration. This report will focus on the use of metadata and

message types as mechanisms for integrating environments. This report includes an example of

generating metadata and messaging requirements in the software development domain.

2

1 Introduction

Effective organizations manage the flow of information from one process to another

within that organization to best use available resources. To best use available information

services, organizations devote resources to automating support for information management across

processes through environment and tool integration. Tool integration automates connections

among specific tools. Environment integration provides the facilities needed for groups of tools

to interoperate. Integrating tools and environments can automate the transition between process

steps using different tools, thereby eliminating unneeded user actions, encouraging use of defined

processes, and increasing productivity. This paper proposes a method for specifying environment

integration requirements using the Information Technology Engineering and Measurement (ITEM)

model.

The ITEM model [8] describes an enterprise’s use of information technology, specifically

its processes and the automation of those processes. The model defines an enterprise in terms of

five "levels of abstraction." Because enterprises do not operate in a vacuum, the ITEM model

also classifies external stimuli acting on the enterprise. These external stimuli encourage an

enterprise to evolve by adopting new technology, lowering costs, changing business processes

and quantifying success.

Defining the organization’s processes and the automation to support those processes is

typically part of a business process reengineering [4] effort redefining an enterprise’s processes

and automation to better match the enterprise’s goals and take full advantage of available

technology. Business process reengineering encompasses the continuing evolution of the

enterprise to meet enterprise goals through improvements in processes and the automation that

implements those processes.

Within a business process reengineering effort, tool and environment integration is a

response to process requirements. For example, if a software development process includes

developing test cases from requirements, a test case generation tool could use the products of the

requirements analysis tool. The requirements analysis tool might send a message to the test case

generation tool containing requirements for testing, or the requirements analysis tool might store

completed requirements definitions in a repository using a standard representation accessible to

the testing tool. The integration method chosen depends in large part on the policies and

procedures of the organization.

The proposed technique of using the ITEM model to collect and organize requirements

helps the environment integrator improve the requirements collection process thereby decreasing

the cost of integration efforts. Improved requirements decrease costs over the entire development

life cycle by decreasing the number of costly errors and miscommunications in later phases of

the life cycle.

3

The rest of this paper will provide background on integration and the ITEM model (sec.

2), the proposed method for defining integration requirements (sec. 3), an example use of the

proposed method (sec. 4) and conclusions (sec. 5).

2 Background

2.1 Integration Definitions

While integration is a response to process needs, there are several accepted classes of

integration responding to different process needs. Presentation integration imposes consistent user

interfaces on a set of tools reducing requirements on the user to learn and maintain different

interface commands. Data integration allows tools to share information or work cooperatively

on the same data permitting users to employ multiple tools on shared data more effectively.

Control integration encompasses the mechanisms tools use to exchange and enact events (i.e.,

starting or ending of particular jobs or tasks). Each integration class provides different,

complementary benefits to the user and imposes different requirements on the supporting

environment. While these integration classes are clearly related, they are frequently discussed

separately to provide different perspectives on the problem of integrating tools.

There are two primary approaches to implementing an integration class. Point to point

integration connects tools through specialized conversions or private agreements on interfaces

and conventions resulting in tightly integrated tools which can share and understand common data

and recognize commands. Because each tool pair may require a separately maintained interface,

there is a high maintenance cost associated with this model. Framework integration provides

interfaces to common data sharing, communication, user interfaces, or other integration

mechanisms. Because each tool, theoretically, requires only an interface to the framework instead

of interfaces to every tool, a framework integration approach should decrease the long term

integration costs. The Reference Model for Frameworks of Software Engineering Environments

(Framework RM) [7] defines a framework as "the [relatively] fixed infrastructure capabilities

which provide support for processes, objects, or user interfaces" [7].

2.2 Requirement Specification and Collection

Integration efforts for any class or approach are software development efforts and should

follow the same software development practices as other software development efforts. This paper

focuses on the requirements collection and analysis and the high level design portion of an

integration effort. Software requirements analysis is the initial phase of the traditional software

development fife cycle. The product of this phase is the software requirements specification

(SRS) [3] which defines attributes of the software under development. The purpose of the SRS
is to communicate the needs and wishes of the eventual buyers and users of the software to the

software developers and testers. Davis [3] lists several properties of a well-written SRS:

consistency, completeness, nonambiguity, verifiability, understandability by non computer

4

specialists, modifiability, traceability and annotation [3]. These goals require a well-organized set

of requirements clearly related to the eventual uses of the software.

A good SRS can aid in detecting errors both during requirements analysis and later in the

development cycle. Detecting and correcting mistakes, omissions, inconsistencies and ambiguities

early in the life cycle is much less expensive than correcting errors in later products. The SRS
also provides guidance to the software testers about what is important to the software users, and,

therefore, should be tested extensively.

For the SRS to be useful in detecting errors, it must be well-organized and clearly written.

Davis defines as the most difficult part of requirements analysis "organizing all the information

relating different people’s perspectives, surfacing and resolving conflicts, and avoiding the

internal design of the software." [3] We propose that use of the ITEM model for requirements

specification, organization, collection and analysis can begin to address these problems.

2.3 ITEM Model

The ITEM model [8] describes an

enterprise’s processes, automation for those

processes and the relationship between its

processes and automation at five levels of

abstraction. The ITEM model also defines

four sources of external stimuli on the

enterprise: marketforces, technology changes

available to the enterprise, models that the

enterprise uses, and measurements of the

enterprise’s actual processes and products.

The ITEM model was developed from

previous work on the Reference Model for

Frameworks of Software Engineering

Environments [7] and the Project Support

Environment R^erence Model [1].

The ITEM model uses the following five information levels or levels of abstraction, for

describing processes and automation within an organization [8]:

The enterprise level defines organizational policy and decision making.

The application domain level defines the methods for implementing the enterprise

decisions and developing specific enterprise products.

Activities are sequences of steps needed to implement the application domain

methods.

5

Tasks are single steps used to carry out an activity, possibly automated using a tool.

H The environment infrastructure is the enterprise’s information technology support

services.

In mapping an enterprise to the model, each model level defines a set of components at that

level. ITEM model components are processes, automation, policies, goals and resource

allocations. Each level defines components which structure their subcomponents at the next level

while the stimulus of available technology changes the potential capabilities of the environment

infrastructure (See Figure 2). These technological changes open new options to the enterprise

allowing it to evolve while external stimuli encourage that evolution.

7=^

ENTERPRISE

MODELS

ENTERPRISE

MODELS
ENTERPRISE

MODELS

APPLICATION

DOMAINS

APPLICATION

DOMAINS

APPLICATION

DOMAINS

ACTIVITY

MODELS

ACTIVITY

MODELS

. . . ACTIVITY

MODELS

TASKS TASKS TASKS

ENVIRONMENT

INFRASTRUCTURE

ENVIRONMENT

INFRASTRUCTURE

ENVIRONMENT

INFRASTRUCTURE

y y ^ J
Figure 2: Enterprise Evolution and the ITEM model

Components at each level emphasize a different mix of process and automation elements.

At higher levels of abstraction, process dominates the description of each component. Each lower

level describes the implementation of the process and the capabilities of the enterprise in greater

detail. At the lowest level, the environment infrastracture defines the basic components useful

across the enterprise for automating and integrating its processes. These basic components (e.g.,

operating systems, email, databases) could support or automate steps in a variety of different

processes. Poorly integrated tools require additional process steps or components at some level

of the model- to transfer information while weU integrated tools can eliminate process steps and

reinforce use of the process.

2.4 ITEM Model and Integration

At the activity level, the nature of the tool integration available to implement a process

has the most apparent significance. An activity implements a goal of an enterprise application

domain and consists of tasks which are single steps of a process. The enterprise may automate

a task by using a single tool or small toolset. Tool services greatly influence task definitions.

Activity level processes combine several tasks into a significant portion of an application domain

6

process for achieving an application domain goal. Consequentiy, an activity may incorporate

several tools into the automation of its process.

Integrating the tools supporting an activity can improve the efficiency and performance

of the activity process. Integration within a task is, typically, not necessary since a task usually

requires the support of only one tool or tool set. Integration at the application domain level can

provide for process support across activities, but integration at this level is harder to use

effectively since integration across sets of activities requires integration between much larger

environments.

Components at each ITEM model level influence the enterprise’s environment integration

strategy imposing requirements and providing choices. Requirements generated at higher levels

of the ITEM model, activity through enterprise, are process-oriented and reflect the need to

automate transitions among processes and process steps. Requirements generated at the less

abstract levels of the enterprise, activity through infrastructure, are automation-oriented and

reflect the capabilities of the environments avaUable to the enterprise and the difficulty of

integrating specific tools. Examples of the types of integration requirements originating at each

ITEM model level foUow:

The enterprise level identifies any common policies or goals for maintaining and

accessing information or maintaining a common environment.

The application domain level refines the common policies or goals of the enterprise for

the development of specific products and the integration of the processes needed to

develop those products.

H The activity level determines the actual tasks requiring integrated support and the

availablity of integrated support alters the activity level processes.

The automation used for implementing tasks defines the specific capabilities requiring

integration.

The environment infrastructure defines the capabilities currently available to the enterprise

for integrating the tools.

Successful environment and tool integration efforts have to bridge the gap between

available automation capabilities and the enterprise’s defined processes. This requires

incorporation of the external stimuli affecting the enterprise into the requirements. Examples of

the types of requirements generated from the external stimuli follow:

Market forces provide incentive to pursue tool integration as a mechanism for reducing

cost.

7

H The enterprise integration model that the enterprise chooses effects its decision on any

particular integration strategy.

The technological changes available to the enterprise increase its capabilities to integrate

tools.

H Measures of current process efficiency and process improvement goals effect the choice

of integration strategy.

An enterprise integrates tools to provide automated support for its processes. Environment

integration links enterprise processes to automated infrastructure. Process automation imposes

requirements on environment supplied services. In defining an integration strategy, an enterprise

has to define both its processes and its automated environment By knowing the enterprise’s

processes and what capabilities the enterprise’s automated environment can support, the enterprise

can define any additional needs it has for environment capabilities and the connections it can use

among environment components.

2.5 Enterprise Integration Options

Enterprise integration options providing extensive automated support for the process requir

that tools agree on conventions for exchanging information or invoking procedures. These

conventions can take the form of standardized message types and metadata (e.g., database

schemas). Metadata are definitions or templates representing conventions about the syntax and

semantics of the shared data. Message types provide similar definitions or templates for the

messages. In an object-oriented environment, the metadata could define the components or

properties of objects or classes of objects while message types could define methods for invoking

objects.

Defining shared data semantics requires agreement on the underlying syntax and

encodings for exchanging data. There are different data conventions depending on the complexity

of the shared information’s syntax and semantics. ASCII and Unicode are examples of simple

text encoding schemes. Data with more complex stmctures require more complex encoding

schemes. For example, SGML, RTF or postscript encode formatting information.

These mechanisms encode data formats; metadata conventions attempt to encode the

semantics of the data. Many tools save working files in proprietary, specialized formats that allow

the tool to use the information but limit outside access to it. Cooperative access to data requires

that tools share a common model of the structure of the data.

Messaging mechanisms are a different approach to supporting cooperative tool usage. A
tool can work cooperatively with other tools while controlling access to its data by manipulating

the data in response to requests from other tools. Messaging also allows automated invocation

of new tools on task completion. In some object-oriented models, messages are the methods for

invoking application (or tool) objects.

8

Messaging and metadata approaches are overlapping approaches to the problems of

supporting enterprise integration needs. Tools can use data shared through a repository or shared

via messaging to create new output. These mechanisms encourage different approaches to

combining information and reflect different models of developing products. Messaging and

metadata approaches can be complementary in that messaging can provide for tool

communication about the shared data.

The choice of integration option will depend not only on the capabilities of the

organization’s environment infrastructure, but on the policies of the organization as well. For

example, how much effort is the organization prepared to expend in integrating particular tools?

Custom integration efforts are expensive and new releases tend to require substantial maintenance

on the integration code. Alternatively, buying already integrated tools may be possible, but

severely limits the choice of available tools and tool features. In addition, the choice of

integration mechanism for any particular pair of tools is not made in a vacuum. An enterprise

may use many tools on any part of a process. For example, a software development environment

may have CASE, metrics, project planning and coding tools all in use. The enterprise must decide

which integrations have the highest potential payoff for the expected investment. The integration

strategy for any pair of tools depends on the relative importance of the task interaction that those

tools support, other tools and environments each tool must remain compatible with, the level of

effort of the present mechanism and the cost of integrating those tools.

3 Defining Integration Requirements

We use the ITEM model to generate four views, termed integration views, of the

relationships among enterprise elements and their impact on enterprise integration strategies. In

combination these views help the enterprise define its integration requirements and set priorities

for defining and implementing enterprise integration strategies:

* Constraint - This view describes restrictions on integration capabilities defined at each

model level. Restrictions can derive from policy, goal, process, or automation choices.

* Interface - This view describes process-defined interconnections among model

components.

* Semantic - This view describes the semantics of the interconnections among the services

supporting the enterprise processes. This view begins to translate the component

interconnections into requirements for automated support of those connections.

* External - This view describes the impact of external stimuli on the enterprise’s

integration strategies.

Each of the first three views provides an increasingly detailed picture of the relationships among

an enterprise’s constituent elements at each level of abstraction. By defining each view across

9

all the abstraction levels, an enterprise integrator can define a comprehensive integration strategy

and its impact at each model level.

The rest of this section will further defirie and provide an example use of these views.

3.1 Constraint view

The constraint view defines constraints that ITEM model components (e.g., goals, policies,

processes, infrastructures) defined at one level impose on components at other levels. These

constraints limit the range of environment integration options. Components at each level define

the behavior of combinations of subcomponents at other levels and establish goals and polices

restricting choices for implementing those subcomponents. The task and infrastructure levels

define the enterprise’s automation capabilities (e.g., infrastructure, process steps, tools) available

for building supported processes. Table 1 provides typical areas for requirements on component

integration defined for each level.

Task 1: Example Integration Constraints

Level Constraints

Enterprise Corporate goals, policies; Cost constraints

Application domains Goal or product oriented constraints

Activities Process constraints; organization of personnel

Tasks Tool (both custom and "shrink wrapped" software) capabilities

Environment Integration Infrastructure c^abilities supporting integration

An earlier paper on the ITEM model [8] provided an example description of a cable

broadcasting company supplying a "virtual VCR" service. This service consisted of the cable

company supplying a video in response to a customer request. While the description is a

simplification of the services required to supply this capability, it illustrates the ITEM model.

Table 2 provides a constraint view of this example.

10

Table 2: Constraint view of the Virtual VCR Application

Level Services Constraints

Enterprise Video on demand Fast and accurate response to customer request; the

customer is accurately billed

Application

domains

Video on

demand -

enterprise

function

Customer

Relations

Customer request for service processed promptly

Video library sufficient to meet customer demands

Accounting Customer is charged the correct amount for service

Video

Projection

Customer has simple interface to video controls

Video is available at time specified

Activities Customer

Relations -

application

domain

Video

Ordering

Customer should have simple procedure to access video

library

Video

Projection -

application

domain

Insert Video "Real time" response/performance required; simulation of

home VCR control panel
Play Video

Pause

Eject

Accounting -

application

domain

Pricing Prices vary by video selected and time of day

Billing Update customer account; send monthly bill

Tasks Play Video -

activity

Send Images Video projection infrastructure must support real lime

performance

Pause -

activity

Suspend

Transmission

Pricing -

activity

Enter

customer data

Do not rekey data; receive it from customer request

Determine

price

Pricing database is accurate

Billing -

activity

Record

Payment

Do not rekey data; receive it from customer request

Bill customer Accurately record information

Environment

Infrastructure

Video projection infrastructure Real time performance required; multiple customers

processed simultaneously; process video data files

Video Repository Video library maintained and accessible

Networking Infrastructure All systems connected and able to exchange information

MIS system Maintain existing data; accounting data maintained

11

3.2 Interface View

While the constraint view describes restrictions on component integration, the interface

view describes process defined component interconnections. Each process component decomposes

the processes for achieving its goals into sub-processes and their interconnections for achieving

sub-goals until reaching atomic task processes. These tasks generdly rely on some form of

automation. An enterprise could potentially automate these connections by integrating the

automation supporting tasks which are related subcomponents of the same process.

The interface view focuses on two features: the information exchanged across the interface

and the sequence of events required to reach that interface. In decomposing a process,

components of the process may have to exchange information. This information can be products

or about products of the process. A requirement for exchanging information can become a data

integration requirement Process steps, as embodied in sub-components, may execute in a

particular order or require fulfillment of preconditions to execute. A requirement on the order of

or conditions for invoking tools might become a control integration requirement Table 3

illustrates interconnection requirements by providing descriptions of information exchange and

event sequencing in the virtual VCR application.

3.3 Semantic View

The semantic view describes the semantics of the service interfaces by defining the

metadata and messages associated with each ITEM model component This view presumes the

existence of tool and environment services supporting or supplying the associated processes. The

semantic view divides into control and data integration subviews. These requirements can provide

a strong link from the process requirements on the integration (e.g.. Link these process steps) with

the implementation requirements (e.g., pass this object to this tool). Specifying the metadata and

message types exchanged across each interface provides information on data and control flow for

the system integrator.

This use of metadata and message types implies a standard for or a predefined agreement

among vendors on metadata and message types and their binding in different concrete

representations. While there are no uiuversally accepted standards in these areas, there are several

promising efforts. The Electronics Institute of America (EIA) CASE Data Interchange Format

(CDIF) committee is standardizing metadata in the form of abstract description of the products

of tools. ISO/IEC JTC1/SC7AVG11: Software Engineering Data Definition and Interchange

project is taking these abstract descriptions and developing bindings to the Portable Common
Tool Environment’s (PCTE) Data Definition Language (DDL) and to the Information Resources

Definition System (TRDS) Content Modules. American National Standards Institute (ANSI)

Committee X3H6 CASE Tool integration methods is standardizing a set of abstract message

types (termed servicegrams) for which vendors can develop bindings. These are examples of the

standards committees and consortia recognizing the need for standard messages and metadata.

There are many others working on standardizing metadata in specific domains or using specific

formats.

12

Table 3: Interface View of the Virtual VCR Application

Level Services Information Exchanged

(Data Integration)

Event Sequencing

(Control Integration)

Enterprise Video on demand Customer relations sends video

and customer information to

video projection and

accounting

Customer relations accepts

order then notifies accounting

and video projection to begin

processing order

Application

Domains

Video on

Demand

Customer

Relations

Generates order from customer Customer begins process by

placing an order

Accounting Requires information about

requested service, prices,

customer, and payment status

Updating the bill requires

calculating the correct service

price

Video

Projection

Video projection activities

exchange transmission state

and user "button pushes"

Begins with ’Insert Video’

command; partial ordenng to

other commands

Activities Video

Projection

Insert Video

Play Video

Pause

Halt

Exchange information on user

interrupts and video

transmission state among the

tasks

Within each activity, first

interpret user "button push"

first perform legal requests

Accounting Pricing Provides price given service Done on request

Billing Updates bill from service info. Update then send bill

Customer

Relations

Video

Ordering

Receive information from the

user and record in order form

Requires customer begin

activity

Tasks Play Video Send Images Provide video to customer;

receive customer commands

Perform tasks in correct

sequences for smooth video

transmission and responsePause Suspend Trans.

Pricing Enter customer

data

Receive data in a form that can

be entered into database

Requires customer request to

perform task

Determine

price

Receive information to index

pricing database

Done on request

Billing Bill customer Uses account status information Done at regular intervals

Record

Payment

Billing system records bank

and customer information

Respond to customer

payment

Environment

Infrastructure

Video projection infrastructure Support video transmission of

videos to and feedback from

individual customers

Respond to customer control

(VCR controls) of

presentation delivery

Video Repository Maintain videos Respond to requests

Networking Infrastructure Support enterprise policies on

application data sharing

Support enterprise processes

on task (application) ordering

MIS systems Support needed business data

management

Respond to application

request for information

13

Messaging and metadata requirements are not equivalent to control and data integration

requirements. Messaging requirements place requirements on the infrastructure and tools to

support the exchange of specific types of messages. Messaging is only one mechanism for

implementing control integration which includes any mechanism that permits the interaction of

multiple tools on a single process without necessarily sharing any common view of that process.

Metadata requirements define types of data or views of common data that the tools should

possess. Defining metadata is only one mechanism for achieving data integration which includes

any mechanism for sharing data across multiple tools. Data and control integration approaches

are not mutually exclusive and requirements on each are often difficult to separate.

Table 4 provides a set of possible metadata and message type definitions for the Virtual

VCR application example.

3.5 External View

Exchanging messages and sharing metadata may both satisfy the requirements for tool

interaction to support the process. The choice of which approach to take is not entirely dependent

on the original requirements. There are concerns external to the enterprise which influence the

decision about which approach to pursue.

External stimuli impact all decisions of the enterprise including decisions to support a

process by integrating tools used in that process. External stimuli provide incentives for

increasing integration through market pressure for increased productivity and new technical

innovations available to the enterprise. Alternatively, external stimuli can also provide

disincentives for integration through measures of the costs of the integration and the difficulty

of maintaining a complex integrated environment. Table 5 lists examples of the external stimuli

which can influence enterprise integration decisions.

14

Table 4: Semantic View of Virtual VCR Application

Level Services Metadata identified Messages identified

Enterprise Video on demand Customer Order Service Request Message

Application

domains

Video on

demand

Video

Projection

Customer Order (info used:

video, time of broadcast,

customer info)

Service Request Message

Service Status Message
Accounting

Customer

Relations

Activities Video

Projection

Insert Video Status of broadcast

Customer order (info used:

video, time of broadcast,

customer info)

Insert Video Request Msg

Play Video Play Video Request Msg

Video Pause Pause Video Request Msg
Restart Video Request Msg

Video Halt Stop Video Request Msg

Accounting

service

Pricing service Customer Order (info used:

video, time of broadcast,

price)

Pricing Request Msg

Billing service Customer Order (info used:

customer, price)

Customer Bill

Billing Request Msg

Customer

Relations

Video

Ordering

Customer Order Service Request Msg
(initiated)

Tasks Play Video Image sending Status of broadcast Stop Trans. Request Msg
Start Trans. Request Msg

Video Pause

Pricing Data Query Customer Order (info used:

service ordered, price)

Pricing Request Msg

Calculation Price Calculation Request Msg

Billing Data Storage Customer Account Account Status Req. Msg
Update Account Message

Reporting Customer Bill

Customer Payment

Send bill message

Environment

Infrastructure

Video projection infrastructure Status of Broadcast Status request message

Update status message
Video Repository Videos

Networking Infrastructure Status of IT services

MIS system Databases, Accounts, etc.

15

Table 5: External Stimuli and Integration

Category Examples

Market Forces 1) Reduce costs/improve productivity

2) In home channel capacity

3) Increase library capacity

Technological Change 1) Availability of integration standards and standards compliant products

2) New application and environment features

3) Increased transmission bandwidth available

4) Use of digital data transmissions and video standards

5) Use of video compression technology

6) Transmission capacity available via cable, fiber optics, or satellite

Models 1) Process model that integration should support

2) Integration model (e.g., framework, point to point) that enterprise uses

Measurement 1) Expected savings/productivity increases from integration

2) Cost of data transmission per video

3) Simultaneous video transmissions

3.5 Requirements Definition

Each view provides a description of the relationships among enterprise components. These

views classify information about the relationships, organizing it into a form that a system

integrator can use for requirements analysis and high level design. The ITEM model views

provide a mechanism for specifying and organizing internally and externally imposed constraints

on integration strategies, requirements on component interfaces, and process imposed

requirements on the semantics implemented by those interfaces. The system integrator can use

this information to collect requirements for an integration strategy and trace those requirements

back to functional units within the enterprise.

Davis [3] identified four areas that are difficult in requirements analysis:

* Organizing all the information

* Relating different people’s perspectives

* Surfacing and resolving conflicts

* Avoiding the internal design of the software

The ITEM model provides a structure for organizing information about an enterprise’s processes

and automation and classifying it both by level of abstraction and functional area of interest. It

handles different perspectives by allowing activities to combine overlapping sets of common
tasks. Activities can reflect different sets of job functions while the underlying tasks remain

constant across many activities (e.g., update database). Since tasks and infrastructure tend to be

consistent or fairly consistent across the enterprise, conflicts in the use of the infrastructure or

tasks will tend to surface in conflicting requirements on those tasks and infrastructure at the

16

activity and domain levels. Finally, the model does not address internal design issues, only the

external behavior that the requirements exhibit.

The model facilitates collecting requirements from different levels of abstraction which

impact the problem of integrating the same components. Examination of these collected

requirements for a particular set of components permits the system integrator to focus on the

modeled enterprise features influencing the choice of integration strategy. For example. Table 6

provides the collected views of the tasks in the billing activity in the virtual VCR application.

Task level interconnections correspond generally to tool level interconnections which makes tool

interconnections supporting a frequently performed activity a good candidate for integration.

Several of these requirements obviously interact. While the ITEM model helps to surface that

interaction, it is still up to the system integrator to identify problem areas. Duplicated or partially

duplicated requirements can indicate a very strong requirement clearly traceable through the

enterprise’s process and automation choices to multiple sources.

Description of the integration requirements at all ITEM model levels is important for

understanding why the enterprise values this integration and what the integration effort actually

entails. Without the process level information, it is difficult to understand why the enterprise

values the integration or what purpose the integration serves. Without the details of what pieces

of the software environment the enterprise proposes to integrate, it is difficult to judge the cost

or complexity of the integration effort.

The enterprise can use all model description levels to relate external stimuli to the

integration efr'ort These external stimuli describe both the technological advances (technological

change) available to the enterprise and the pressures to adopt less costly processes (market forces)

for producing products. The ITEM model external stimuli also includes the cost benefit models

available to the enterprise for determining the value of carrying out the integration effort and the

metrics for verifying that these models apply. It is the ability to measure and model the process,

current automation and projected integration that most require understanding the ITEM model

description of the integration requirements. The ability to make these measurements permits the

calculation of the costs and benefits of the integration.

17

Table 6: Collected ITEM Views of Billing Process

Service Constraint view Interface View Semantic View

Information

Exchanged

Event Sequence Metadata Message Types

Enterprise -

Video on

Demand

Fast, accurate

response to

customer with

accurate

customer billing

for service

Customer

relations sends

video and

customer

information to

accounting

Customer

relations has to

accept the order

then notify

accounting

Service Request Add New
Charge

1

Application

Domain -

Accounting

Customer has to

be charged the

correct amount

for service

Pricing activity

has to receive

sufficient

information to

price the service

and send the

price to billing

Billing requires

previous

calculation of

new charges

Service Request

- Customer

- Video

- Time

Add New
Charge

Calculate Price

Activity -

Billing

Bill for

accumulated

charges sent

each month

(hypothetical

billing policy)

Uses price and

customer

information to

update customer

charge

Updates bill

with price

information for

regular billing

to customer and

recording of

customer

payment

Service Request

as above

Customer Order

- Customer

- Price

Monthly Bill

- Customer

- Accumulated

Charges

Add New
Charge

Send Bill

Record

Payment

Task - Billing

tasks

Avoid rekeying

data; provide

accurate records

Rilling database

receives new

charges,

produces bills

for customer,

and gets

updated with

payment info

Each task done

in response to

specific

customer action

or at timed

intervals

Service Request

Customer Order

Monthly Bill

as above

with data types

for each data

element

Notification

messages that

- Charges

updated

- Bill sent

- Payment

recorded

Environment

Infrastructure -

MIS systems

maintain

existing data

Support

database needs

of billing

activity

Respond to

application

information

request or

update

Support for

structuring

customer

records as

above

Suppon for

sending and

receiving the

messages

above

18

4 Example: Software Development

This section provides an extended example using the ITEM model to define requirements

in the software development domain. This example focuses on the tasks and activities typically

considered part of software development, and the integration requirements that those tasks and

activities can impose on software engineering environments (SEE) supporting them. Table 7

provides a outline using the ITEM model of the example enterprise. It is an enterprise which

performs software development, and the only portions of the enterprise that matter for this

example are those directly connected to the production and maintenance of software. The

example concentrates on the task and activity levels of the model to focus on the problems of

defining integration requirements for SEEs while ignoring other parts of the enterprise.

Table 7: Software Development Enterprise

Level Description

Enterprise Software company

Application Domain Software Development using Waterfall Life Cycle Model

Activities example activities as defined in DIS 12207-1

Tasks as defined for activities in DIS 12207-1

tool support for tasks as appropriate using definitions from the PSE RM

Environment Infrastructure POSIX compliant heterogeneous platforms

messaging infrastructure

repositories

For this example, we will use the software development activity definitions from DIS 12207-1:

Software Lifecycle Processes. This is a draft international standard defining the major software

development processes and the tasks composing those processes. We used DIS 12207-1 because

it provides a convenient set of accepted definitions for these activities. DIS 12207-1 does not

require the use of a specific life cycle model to organize the processes or inclusion of all the

processes. Each enterprise must define its life cycle model and assemble a tailored subset of the

activities into its software development process. This example wiU use the 12207-1 life cycle

process definitions as the generic software development activities found in an example enterprise.

DIS 12207-1 defines the following "software lifecycle processes" as software development

activities:

1) Process implementation

2) System requirements analysis

3) System architectural design

4) Software requirements analysis

5) Software architectural design

6) Software detailed design

19

7) Software coding and testing

8) Software integration

9) Software qualification testing

10) System integration

11) System qualification testing

12) Software installation

13) Software acceptance support

In the ITEM model, the application domain defines the relationships among its component

activities including its life cycle model, the order of activities, the products of activities and the

interaction of these activities with other activities such as configuration management. For this

example, we decided to use a "waterfall life cycle model" with each activity completing before

the next can begin and the products of each activity taken as input into the next activity. Each

activity also interacts with a configuration management activity to manage both the final and any

intermediate products of the activity. We selected this model because it is widely used and other

models such as rapid prototyping generally use either abbreviated forms of the waterfall model

or use multiple iterations of the model. While we selected this model, there are many other life

cycle models and options for tailoring the choice of activities and assembling them into a

software development process. The example software development application domain defines

the interactions among the activities affecting the information exchanged and the sequencing of

the activities. The system integrator can derive data and control integration requirements from

these activity interactions.

Activities are sequences of tasks and ITEM model activity definitions include definitions

of task products and interactions. For this example, we use DIS 12207-1 definition of the process

tasks comprising the software development activities. Typically, tools support tasks, and for this

example, we map the software development tasks to generic tool support defined in terms of

services in the Project Support Environment Reference Model (PSERM) [1]. It is the interfaces

between these services and the information and control flow across these interfaces that is the

concern of the system integrator and the software engineering environment developer. The

following is a list of the tasks and associated services supporting those tasks for each of the DIS

12207-1 software development activities:

System Requirements Analysis

Analyze intended use of the system - System requirements analysis service (PSERM 4.1.1

)

Evaluate system requirements for traceability, consistency, testability and feasibility -

System requirements analysis service (PSERM 4.1.1)

System Architectural Design

Establish top level architecture - System design and allocation service (PSERM 4.12)

Evaluate architecture for traceability, consistency, appropriateness, and feasibility - System

design and allocation service (PSERM 4.1.2)

20

Software Requirements Analysis

Establish software requirements - Software requirements analysis service (PSERM 42.1)

Evaluate requirements for traceability, consistency, testability, and- feasibility - Software

requirements analysis service (PSERM 42.1)

Conduct review

Software Architectural design

Transform requirements into architecture - Software design service (PSERM 4.2.2)

Develop top-level interface design - GUI building service

Develop design for database - Database design service

Develop preliminary user manuals - Publishing service (PSERM 72)

Develop preliminary test requirements and schedule for software integration - Software

testing service (PSERM 4.2.9), Planning service (PSERM 6.1)

Evaluate design for traceability, consistency, appropriateness and feasibility - Design

simulation and modeling service (PSERM 42.3)

Conduct review

Software Detailed design

Develop a detailed design for each component - Software design service (PSERM 42.2)

Develop a detailed design for database - Database design service

Update user’s manuals - Publishing service (PSERM 72)
Define and document test requirements and schedule for software units - Software testing

service (PSERM 4.2.9), Planning service (PSERM 6.1)

Update test requirements and schedule for software integration - Software testing service

(PSERM 42.9), Planning service (PSERM 6.1

)

Evaluate detailed design for traceability, consistency, appropriateness and feasibility -

Software design service (PSERM 4.22), Software simulation and modelling service

(PSERM 42.3)

Conduct review

Software coding and testing

Develop each software unit and database - Software generation service (PSERM 4.25),

Compilation service (PSERM 4.2.6)

Test each software unit and database - Debugging service (PSERM 42.8), Software static

analysis service (PSERM 42.7), Software testing service (PSERM 42.9)

Update the user’s manuals - Publishing service (PSERM 72)

Update the test requirements and schedule for integration testing - Software testing

service (PSERM 4.2.9), Planning service (PSERM 6.1)

Evaluate software code and test results for traceability, consistency, test coverage,

appropriateness and feasibility - Software static analysis service (PSERM 4.2.7)

Conduct review

21

Software Integration

Develop integration plan - Planning service (PSERM 6 1)

Integrate software units and test aggregates - Softwu build service (PSERM 4.2.10),

Software testing service (PSERM 42.9)

Update user’s manuals - Publishing service (PSERM 72)

Develop and document test cases for qualification requirements - Software testing service

(PSERM 42.9)

Evaluate integration plan, design, code, tests, test results and user’s manuals for

traceability, consistency, test coverage, appropriateness, conformance and

feasibility - Software testing service (PSERM 42.9), Software static analysis

service (PSERM 42.7)

Conduct review

Software Qualification Testing

Conduct qualification testing - Target monitoring service (PSERM 4.1 .9), Software testing

service (PSERM 4.2.9)

Update user’s manuals - Publishing service (PSERM 72)

Evaluate design, code, tests, test results and user’s manuals for test coverage,

conformance, and feasibility -

Support audits

Update and prepare deliverable software for integration testing - Debugging service

(PSERM 42.8)

System integration

Integrate units into system - System integration service (PSERM 4.1.6)

Develop system qualification tests and test procedures - System testing service (4.1.5)

Evaluate integrated system for test coverage, appropriateness, conformance, and feasibility

System qualification tests

Conduct system qualification tests and record results - System testing service (4.15)

Evaluate system for test coverage, conformance and feasibility

Support audits - Traceability service (PSERM 4.1.10)

Software Installation

Develop a plan to install the software - Planning service (PSERM 6.1

)

Install the software - Tool installation and customization service (PSERM 7.4.1)

Software Acceptance Support

Support acceptance review

Complete and deliver documentation - Publishing service (PSERM 72)

Provide training

This set of activities and tasks including the tool services supporting those tasks provides the

context for the software engineering environment integration workm this example. The enterprise

22

would like to improve its productivity by providing as much automated support for the software

development process as possible. To reach the full potential of automating the process, however,

requires also automating the connections between process steps, that is integrating the tool

services supporting the process.

4.1 Constraint view of the Software Development Enterprise

The constraint view of the enterprise defines the restrictions on the enterprise imposed

goals and restrictions on the integration of processes and automation. Table 8 provides the

constraint view of the example software development enterprise.

Table 8: Constraint view of Software Development Enterprise

Level Requirements

Software Development Enterprise 1) The enterprise defines limitations on cost of the integration.

Software Development Application

Domain
1) The qjplication domain uses the Waterfall Life Cycle Model.

2) The same tool service used in different activities should be supplied by

the same tool (i.e., minimize the number of tools).

Software Development Activities 1) Tasks should be carried in parallel within an activity when possible.

Software Development Tasks 1) Tools should all run on common platforms.

Environment Infrastructure 1) The infrastructure is standards compliant

2) The infrastructure includes a repository and messaging infrastructure

These requirements focus on the overall costs of the integration effort and characterizes in

general terms, the connections among enterprise components.

4.2 Interface View of the Software Development Activities

DIS 12207-1 defines software activities and tasks but does not impose interconnections

on those activities. The user organization tailors the activities and tasks to a specific life cycle

model. For this example, we will use the waterfall lifecycle model. Interfaces exist between

process defined activities or tasks that must exchange information or control flow. If there is tool

support for activities and tasks which have a process defined relationship, then there is an

interface between the tools supplying services for those activities and tasks. The enterprise may
or may not automate that interface by integrating the tools depending on the relative costs and

benefits of that integration. It is these interfaces that are the concern of the system integrator.

Providing better interfaces between tools and supporting process automation is the purpose behind

integration efforts. For this example, we will assume that the software development enterprise

uses a waterfall life cycle model in which each activity follows in sequence upon completion of

key the tasks in the previous activity. Table 9 classifies the information exchanged across activity

interfaces and the sequence of events leading to use of an activity interface.

23

Table 9: Interface View of Software Development Activities

Activity Information Exchanged Event Sequencing

Process Implementation

Sys. Requirements

Analysis

Requires information on intended use of system

Produces system requirements

Starts after process initialized

Sys. Architectural

Design

Requires system requirements

Produces system architectural design

Starts after system requirements

established and validated

S/W Requirements

Analysis

Requires system architectural design, system

requirements, and information on intended use

Produces s/w requirements

Starts after system architectural

design established and validated

S/W Architectural

Design

Requires s/w requirements

Produces s/w architectural design, interface design,

database deign, user manuals, and s/w integration testing

requirements and schedule

Starts after s/w requirements

established and validated

S/W Detailed Design Requires s/w architectural design, interface design,

database design, user manuals, s/w integration testing

requirements and schedule

Produces detailed design for application and database,

updated user manual, s/w unit testing requirements and

schedule, and updated s/w integration testing

requirements and schedule

Starts after s/w architectural

design, interface design,

database design and user

manuals are validated

S/W Coding and

Testing

Requires detailed design for application and database,

updated user manual, s/w unit and integration testing

requirements and schedule

Produces tested s/w units, updated s/w integration testing

requirements and schedule and updated user’s manuals

Starts after updated detailed

design, user manual, and s/w

integration and unit testing

requirements and schedule are

validated

S/W Integration Requires tested s/w units, updated user manual, and

updated s/w integration test requirements and schedule

Produces s/w qualification testing requirements and

schedule and tested integrated s/w units

Starts after updated user

manual, s/w integration testing

requirements and schedule and

s/w units are validated

S/W Qualification

Testing

Requires tested integrated s/w units, updated user’s

manuals, and s/w qualification testing requirements and

schedule

Produces tested s/w, updated user manuals

Starts after updated user’s

manuals, integrated s/w units,

and qualification testing

requirements and schedule are

validated

Sys. Integration Requires tested s/w, updated user manuals

Produces system with integrated software

Starts after tested s/w and

updated user manuals are

validated

Sys. Qualification

Testing

Requires system with integrated software

Produces tested system with integrated software

Starts after system with

integrated s/w is validated

S/W Installation Requires tested system with integrated software

Produces installed system

Starts after qualification testing

of integrated s/w is validated

S/W Support Requires installed system, and updated users manuals

Produces accepted system

Starts after system is installed

24

Activity level processes require support from environments of multiple tools, and progress

several products from one state to another. This complexity results in complex integration

problems and interface requirements across environments. The task level description of the

interface decomposes the problem since a much smaller number of tools and products are

involved at any one interface. By decomposing the process, the task level decomposes the

integration requirements into the requirements to integrate individual tasks and the tool services

supporting those tasks, not the larger problem of integrating environments. Table 10 provides the

interface view of the software development tasks.

4.3 Semantic View of Software Development Services

Finally, the semantic view of the model begins to define the data and message types that

the various services supporting the different tasks will manipulate and exchange. Table 11

provides the semantic view of the software development example. DIS 12207-1 does not provide

detailed information at this level. For the metadata, we provide common terms for the types of

documents that each tool or service typically accepts as input, manipulates or produces. For the

message types, we have used the ANSI X3H6 servicegram definitions. ANSI X3H6 has defined

about 100 message types or servicegrams classified into nine groups. We have used these groups

for the message type definitions.

25

Table

10:

Interface

View

of

Software

Development

Tasks

Table

10:

Interface

View

of

Software

Development

Tasks

Table

10:

Interface

View

of

Software

Development

Tasks

Table 11: Semantic View of the Software Development Example

Task/Service Tasks Metadata Message Types

System Requirements Analysis Service

(PSERM 4.1.1)

Tl, T2 System Requirement Software Analysis and

Design Servicegrams

System Design and Allocation Service

(PSERM 4.1.2)

T3, T4 System Requirement

System Design

Software Analysis and

Design Servicegrams

S/W Requirements Service (PSERM
4.2.1)

T5. T6 Software Requirement

System Requirement

System Design

Software Analysis and

Design Servicegrams

S/W Design Service (PSERM 4.2.2) T8, T15 Software Requirement

Software Design

Software Analysis and

Design Servicegrams

GUI Building Service T9 Software Requirement

Software GUI Design

Software Analysis and

Design Servicegrams

Database Design Service TIO, T17 Software Requirement

Software Database Design

Software Analysis and

Design Servicegrams

Publishing Service (PSERM 7.20 Til, T17, T24,

T30, T35, T46

User Manual

Documentation

Edit Servicegrams

S/W Testing Service (PSERM 4.2.9) T12, T19, T25,

T31, T34,

Software Requirement

Software Design

Software Test

Debug Servicegrams

Planning Service (PSERM 6.1) T12, T19, T25,

T28, T43

Schedule

Resources

Software Process

Servicegrams

S/W Design Simulation and Modeling

Service (PSERM 4.2.3)

T13, T20 Software Design

Software Environment

Software Analysis and

Design Servicegrams

Code Editing Service T22, T29 Software Modules Edit Servicegrams

Software Generation Service (PSERM
4.2.5)

T22, T29 Software Modules Debug Servicegrams

Compilation Service (PSERM 4.2.6) T22, T29 Software Modules

Executable Objects

Build Servicegrams

Debug Servicegrams

Debugging Service (PSERM 4.2.8) T22, T29 Software Modules

Executable Objects

Debug Servicegrams

Software Build Service (PSERM
4.2.10)

T43 Software Modules

Executable Objects

Build Servicegrams

Software Static Analysis Service

(PSERM 4.2.7)

T26 Software Modules Static Analysis

Servicegrams

Tool Installation and Registration

Service

T44 Executable Program

System Integration Service T39 Software Modules

Executable

Build Servicegrams

System Testing Service T41 Software Modules

29

5 Conclusions

The ITEM model provides a useful tool for collecting and organizing software

requirements especially requirements on integration capabilities. The ITEM model relates

automation and process features of an enterprise to each other. By establishing the relationship

of the process and automation features, it is possible to link requirements on the automation to

the processes that generated those requirements.

Davis identifies three underlying principles of structuring information during requirements

specification. These are partitioning, abstraction, and projection of information [3]. The ITEM
model partitions information according to process defined clusters at different levels of

granularity. The multiple levels of abstraction provided in the model provide a mechanism for

decomposing or abstracting requirements as appropriate. The use of multiple overlapping

activities and application domains to organize individual tasks permits the requirements analyzer

to include different viewpoints or projections of the information.

The ITEM model has provided a promising start as a tool for requirements specification,

collection and organization especially for problems in the domain of tool and environment

integration. The examples in this paper, the cable company providing a virtual VCR service and

a software development organization, illustrate how the ITEM model can be a tool for organizing

user requirements; however, this work has only just started. The ITEM model needs to be tested

further on larger projects and examples and in combination with other techniques such as formal

languages and methods. The ITEM model only addresses the problem of organizing the

requirements; the tool must be incorporated into more comprehensive requirements analysis

techniques and software development techniques to be useful.

30

References

[1] Brown, A., D. Carney, P. Obemdorf, and M. Zelkowitz. Next Generation Computer

Resources: Reference Model for Project Support Environments. National Institute of

Standards and Technology, Special Publication 500-213, 1993.

[2] CASE Data Interchange Format - Overview. Electronics Industry Association, Interim

Standard #106, 1994.

[3] Davis, Alan M. Software Requirements: Analysis and Specification. Englewood Cliffs, NJ:

Prentice Hall, 1990.

[4] Hammer, M. and J. Champy. Reegineering the Corporation. New York: Harper Collins, 1993.

[5] Information Technology - Software - Part 1: Software Life-Cycle Process. International

Standards Organization/Intemational Electrotechnical Commission Standard 12207-1-1994.

[6] Portable Common Tool Environment. International Standards Organization/Intemational

Electrotechnical Commission Standard 13719-1994.

[7] Reference Model for Frameworks of Software Engineering Environments. National Institute

of Standards and Technology, Special Publication 500-211, 1993.

[8] Zelkowitz, Marvin and Barbara Cuthill. Information Technology Engineering and

Measurement Model: Adding Lane Markings to the Information Superhighway. National

Institute of Standards and Technology, NISTIR 5522, 1994.

31

